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Abstract: One major area of interest in air-cushion vehicle (ACV) hydrodynamics is ACV-

generated waves. However, the nonlinear effects of varying cushion pressures on the wake 

system remain unclear. This study presents a fast time-domain method that simulates nonlinear 

waves. The paper uses a pressure distribution to represent the ACV, models the nonlinear waves 

by the high-order spectral method, and saves computational effort with damping and domain 

reconstruction techniques. We simulate the nonlinear waves generated by a constant-

speed/accelerating ACV in calm water and by ACV in regular waves, and compare our time-

domain results with experimental, CFD, and perturbation theoretical ones. The results show 

that the nonlinear effects are more pronounced in shallow water and low-speed cases. In the 

constant-speed case, the maximum wave drag predicted by the nonlinear method is lower than 

the linear prediction; in the accelerating case, the nonlinear method shows a slight decrease in 

the Froude number when the resistance reaches the maximum during acceleration. For ACV in 

waves, nonlinear simulations show a second-order wave component resulting from the 

interaction between the air cushion and incident waves. This component has little effect on 

wave force but does contribute to the near-field wave pattern. 

Keywords: air-cushion vehicle, nonlinear free-surface flow, wave resistance 

1. Introduction 

An air-cushion vehicle (ACV), also known as a hovercraft, floats above the surface with 

the help of high-pressure air below the hull, significantly decreasing drag and enabling high-

speed navigation. Unlike traditional marine crafts, there is virtually no contact between the hull 

and the surface of the water. Therefore, frictional resistance is minimal, and wave-making drag 

dominates total resistance (Doctors, 1993). In numerical studies, the wave drag of an ACV is 

calculated from wave elevation. Hence, an accurate simulation and a thorough discussion of 

ACV-generated waves can help us obtain a better understanding of wave-generation and wave-

resistance problems. 

Studies of ACV wakes evolved from the general study of ship wakes. Early studies were 

based on linearized theory, regarding the hovercraft as a pressure disturbance, supposing that 

wave elevation is linearly proportional to cushion pressure (Doctors, 1993). Lord Kelvin first  

Revised Manuscript (Clean Version)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

©2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.
org/licenses/by-nc-nd/4.0/(opens in new tab/window)



2 

 

Nomenclature   

α, β cushion smooth parameters Fd depth Froude number, Fd=U/ gd  

γ, κ filter parameters g gravitational acceleration 

ζ wave elevation k wavenumber vector, k ≡ (kx, ky) 

Λ low-pass filter function L ACV length 

μ damping coefficient lx, ly length of the damping zone 

ρ fluid density of water Lx, Ly length of the fluid domain 

ϕ velocity potential Nx,Ny grid resolution 

ϕs surface velocity potential pACV cushion pressure 

B ACV beam p0 average cushion pressure 

CR resistance coefficient U ACV velocity 

CT transmission coefficient U  ACV acceleration 

Cw wave excitation coefficient x position vector, x ≡ (x, y) 

d water depth xc, yc ACV center position 

Fn Froude number, Fn=U/ gL  ▽x horizontal gradient, ▽x ≡ (∂/∂x, ∂/∂y) 

Superscripts   

D disturbance waves W wake system 

I incident waves ~ dimensionless variable 

E entire flow field   

Subscripts   

t time derivative, ∂/∂t z vertical derivative, ∂/∂z 

x longitudinal derivative, ∂/∂x   

 

studied the wake generated by a point pressure source and derived the well-known Kelvin wake 

pattern (Lord Kelvin, 1887). Havelock (1914, 1932) and Lunde (1951) developed equations for 

the wave resistance of a steadily moving pressure distribution. Newman and Poole (1962) and 

Barratt (1965) considered an ACV as a uniform rectangular pressure distribution and 

investigated wave resistance numerically. The wave resistance obtained with this approach 

agrees well with experiments at high Froude numbers while showing unrealistic oscillations at 

low Froude numbers. To eliminate these oscillations, Doctors and Sharma (1972) found it 

necessary to apply a smoothing function to the edges of the pressure distribution. A simplified 

formula for steady wave resistance, which filters the local flow component, also shows good 

agreement with Doctors’ approach (Noblesse et al., 2009, 2011). In recent years, several studies 

have been conducted on wakes generated from ACVs sailing in ice fields (Li et al., 2017; 

Sturova et al., 2019; Xue et al., 2021). Regarding wakes in unsteady motion, Doctors et al. 

(1972, 1975, 1980) investigated wave drag during acceleration using a method based on the 

Laplace transform in the time domain. Yeung (1975) proposed an approach to predict waves 

generated by an ACV under arbitrary motion with the help of the associated kernel function. 

The studies mentioned above, which are based on linearized theory, neglect the nonlinear 

effects of cushion pressure and may overestimate wave resistance in shallow water (Doctors, 

1993). Much effort has been focused on simulating nonlinear ACV wakes and wave drag. 
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Doctors and Dagan (1980) compared wave resistance calculated using different methods for a 

steadily moving two-dimensional pressure distribution. The results show that the secondary and 

tertiary perturbation solutions agree well with the fully nonlinear numerical results proposed 

by Kerczek (1977). Another innovative method solves the two-dimensional case in the 

complex-wavenumber plane, which can achieve convergence across several iterations 

(Schwartz, 1981). Sung and Grilli (2008) presented a three-dimensional boundary element 

method to solve the steady flow problem. This method takes linearithmic time because of the 

use of the fast multipole algorithm. Nikseresht et al. (2008) solved the Navier–Stokes equations 

using the finite volume method and predicted the resistance of a constant-speed ACV. Bhushan 

et al. (2011, 2017) studied wave drag for straight-ahead and yawed ACVs with an unsteady 

Reynolds-averaged Navier–Stokes (URANS) model and found that nonlinearity may contribute 

to wave drag in shallow water and the low-intermediate Froude number case. Maki et al. (2012, 

2013) compared the wave drag of the pressure distribution with the linear method and URANS, 

with results suggesting that fluid viscosity is almost irrelevant to wave drag.  

The study of nonlinear ACV wakes may be inspired by the more general field of studies of 

ship wakes. Dommermuth and Yue (1988) investigated nonlinear steady-state ship wakes 

created by a pressure disturbance with the high-order spectral (HOS) method. Dam et al. (2006, 

2008) studied the propagation of ship waves in different seabed topographies. Using the 

Boussinesq-type wave model with a pressure term, the solitary waves ahead of the ship (Torsvik 

and Soomere, 2008; Torsvik et al., 2015; Shi and Malej, 2017) and the far-field interaction of 

ship waves (David et al., 2017) have been studied. Pethiyagoda et al. (2017, 2018) conducted 

intensive studies on the spectrum of wave elevation at the probe as well as the transverse waves 

at low Froude numbers. Grue (2017) reported large waves created by a ship passing through an 

abrupt depth transition and reproduced the phenomenon numerically using a pressure 

disturbance. A series of very recent papers approximate the ship as a pressure field and 

investigated the apparent angle of ship waves (Colen et al., 2021; Pethiyagoda1 et al., 2021; 

Lo, 2021). 

Previous studies of nonlinear waves generated by an ACV have been limited to steadily 

moving cases in calm water (Maki et al., 2012, 2013; Bhushan et al., 2011, 2017). The nonlinear 

effects of cushion pressure on ACV wakes and wave drags under unsteady conditions remain 

unclear. This paper introduces an efficient time-domain method to simulate nonlinear ACV 

wakes. The HOS method is extended to model the waves created by a moving pressure 

distribution, which denotes the ACV. The computational domain is reconstructed at each time 

step to ensure that the ship is centered so that arbitrary ship motions can be simulated using 

limited computational resources. Using the proposed method, we studied nonlinear waves 

generated by the ACV at varying cushion pressures.  

This study provides the investigation into the nonlinear effects of cushion pressure on 
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waves generated by accelerating ACV in calm water and constant-speed ACV in regular waves. 

We found that the Froude number that corresponds to the maximum wave drag during 

acceleration is slightly less than the linear prediction when nonlinearity is taken into account, 

and this may help evaluate ACV resistance more accurately. Moreover, the study reveals the 

nonlinear wave component that resulted from the interaction between the incident wave system 

and the ACV wake system, which we termed the transmission component. The wave amplitude 

of the transmission component varies periodically and may reach up to 7–20% of the incident 

wave amplitude; thus, it may affect the motion response in waves. 

2. Numerical methods 

2.1 Problem setup 

The contact between skirt and water is commonly neglected in the study of waves generated 

by a hovercraft, and therefore the ACV may be equivalent to the pressure distribution (Doctors 

et al., 1993). We consider the fluid to be incompressible and inviscid and the flow to be 

irrotational. The flow field can be described using potential flow theories. A 3D Cartesian 

coordinate system is adopted with its origin located at the mean water level and the z-axis 

pointing vertically upwards. In the Eulerian specification, the governing equation and boundary 

conditions are written as follows: 

2

2

0

· 0

1
( )

2

0

t z

ACV
t

z

on z

g on z

on d

p

z



    

   




  


    


    


  

x x

                  (1) 

where ϕ(x, z, t) is the velocity potential, ζ(x, t) is the wave elevation, d is the water depth, g is 

the gravitational acceleration, and ρ is the fluid density. x ≡ (x, y) is the vector in the horizontal 

plane; the subscripts t, z denotes the partial derivative of t, z respectively; and ▽x ≡ (∂/∂x, ∂/∂y) 

denotes the horizontal gradient.  

In Eq. (1), the flow field is described in an earth-fixed coordinate system, and ACVp  

represents a maneuvering ACV with arbitrary motion. Following Doctors and Sharma (1972), 

the ACV studied in this paper is modeled as a rectangular smooth edged pressure distribution 

of length L, beam B: 

0 1 1
tanh tanh

4 2 2

1 1
tanh tanh

2 2

c c
ACV

c c

p x x x x
p

L L

y y y y

B B

 

 

        
           

       

        
          

       

           (2) 

where p0 is the average cushion pressure, and (xc, yc) is the ACV center position. α, β are 
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smoothing factors. Unless otherwise stated, in this paper, L/B defaults to 3/2 and α, β are 24. 

As the ACV moves, ACVp  (expressed in the earth-fixed coordinate system) changes over time. 

The time-domain method proposed in this paper enables simulations not only of constant 

pressure distributions but also of temporally varying distributions. More realistic results can be 

obtained with a cushion model that involves fan and air leakage. 

 

2.2 HOS method with moving pressure distribution 

Over the past decades, many efficient numerical methods have been developed to deal with 

nonlinear free-surface conditions, such as the HOS method based on the Taylor expansions 

(Dommermuth and Yue, 1987, 1988; West et al., 1987, Xiao et al., 2019), Boussinesq-type 

wave models with generalized minimum residual method solver (Boussinesq, 1872; Madsen et 

al., 2002; Fuhrman et al., 2004; James et al., 2006), the spectral boundary integral (SBI) method, 

based on the Green function (Clamond et al., 2001, 2005; Fructus et al., 2005, 2007). Among 

these, the HOS method might be the quickest but may not converge for cases with extremely 

steep waves. Fortunately, the depth-length ratio of ACV is much smaller than that of a 

conventional ship, which results in a relatively gentle wave steepness (Bhushan et al., 2017) 

and fits the HOS simulation. For extremely high cushion pressure or changing seabed 

topography, the SBI or Boussinesq approaches may be applied as well. 

As proposed by Zakharov (1968), the surface potential could be defined as follows: 

 ( , ) ( , ( , ), )s t t t  x x x                               (3) 

The chain rule allows us to deduce the kinematic and dynamic boundary conditions: 

 

2

2 2 2

(1 ( ) )

1 1
( ) (1 ( ) )

2 2

s

t z

s s ACV
t z

on z

p
g on z

     

     

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   



    

x x x

x

           (4) 

For the initial conditions, ϕs(x,0) and ζ(x, 0) are given. In Eq. (4), horizontal derivatives 

can be directly calculated by differential or spectral methods. The HOS method is adopted to 

obtain ϕz. Here we give a brief introduction to the method. More details can be found in 

Dommermuth and Yue (1987). 

First, we expand ϕ in a perturbation series: 

 (0) (1) (2)                                        (5) 

Then, the Taylor expansion is carried out on ϕ at z = 0, we have: 

 

2
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          (6) 
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Thus, we can obtain a series of boundary conditions at z = 0: 

 

(0)

( ) ( )

1

( ,0, )

( ,0, ) ( ( ,0, )) , 1
!

s

k km
m m k

k
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t
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 


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




  




x

x x
                 (7) 

ϕz can be calculated by the following equation: 

 
1 1

( )

1 1

( , , )
( 1)!

k kM M k
m

z k
k m

t
k z


  

  

 

   
   

    
 x                     (8) 

Here M is the HOS truncation order. In the numerical implementation, ϕs and ζ are assumed to 

satisfy the periodic boundary condition and discretized into sets of uniformly spaced grids, 

therefore fast Fourier transform (FFT) can be used to calculate the derivative of ϕ(m) with 

eigenfunction expansions represented in the following forms: 

( ) | |

( )

( , , ) ( )

cosh(| | ( ))
( , , ) ( )

sinh(| | )

m z i

m i

z t A t e e for infinite water depth

z d
z t A t e for finite water depth d

d














k kx

kx

x

k
x

k

     (9) 

where k ≡ (kx, ky) is the wavenumber vector.  

 In this study, the fourth-order explicit Runge–Kutta scheme is used to integrate Eq. (4). 

For numerical stability and de-aliasing, all FFT operations are performed with a low-pass filter 

in the wavenumber space. As proposed by Xiao et al. (2013), the filter takes the form: 

 ( ) exp
max



 
   
 
 

k
k

k
                                    (10) 

where kmax is the maximum wavenumber and γ = 2.2, κ = 30 are filter parameters. 

 

2.3 Attention mechanism 

As described in Section 2.1, this paper studies ship wakes in an earth-fixed reference frame. 

That is, in the numerical implementation, the horizontal coordinates of each grid remain 

invariant. The benefit of this practice is that it eliminates all of the troubles associated with 

mesh movement. However, as the ship continues to move away from its initial position, a large 

computational domain is required to cover the range of ship motion and wave propagation. 

Once the ACV reaches a boundary, the simulation cannot continue. To save computational 

resources while allowing for arbitrary ship motion, we use a special domain reconstruction and 

damping technique, which we call the attention mechanism.  

The attention mechanism works somewhat like a camera with a limited field of view that 

keeps track of the ship’s position and does not take images away from the ship. The position of 
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the ACV is checked at each timestep. Once the ACV escapes the pre-defined area, a 

reconstruction is triggered to reset the computational domain. As discussed in Section 2.2, a set 

of uniformly spaced grids is used to model the fluid domain. In the reconstruction process, the 

grid points at the domain boundary that are moving away from the ACV are removed, some 

points closer to ACV are newly added, and most of the grid points remain unchanged, as 

presented in Fig. 1. During this process, the number of grid points remains unchanged, and the 

memory freed up by the deletion of grid points is used to store information about the newly 

added points. 

 

Fig. 1. Domain reconstruction (×, deleted grid points; ○, newly added grid points). 

To define the data source for the newly added grid points, we divide the entire flow field 

into two parts: incident wave components and disturbance wave components. The wave 

elevation and velocity potential for the added points are derived from the incident wave 

component. The far-field disturbance components will propagate outwards and have little effect 

on the calculation of near-field components. A damping strategy is applied near to the boundary 

to absorb the disturbance component, so only the incident wave components are left at the 

boundary, and point addition/deletion does not induce abrupt changes to the flow field. 

We use subscripts E, I, and D to denote the entire flow field, incident waves, and 

disturbance waves, respectively. Wave elevation ζ E and velocity potential ϕE, which include 

both incident wave and disturbance components, are calculated through the integration of Eq. 

(4), allowing the simulation of various nonlinear interactions. ζ I and ϕI, which represent the 

incident wave, can be obtained from stokes wave theory or from HOS simulation. In this paper, 

we use another HOS simulation to obtain the incident wave flow field. The incident wave 

simulation satisfies the periodic boundary conditions and shares the same initial conditions, 

time steps and grid parameters as the entire flow field simulation but does not contain the 

pressure term. When the entire flow field and the incident flow field are known, the disturbance 

flow field can be separated out as follows: 

 =  

D E I

D E I

  

  

 


                            (11) 

To achieve the damping of far-field disturbance waves, artificial viscosity terms are 
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introduced to Eq. (4):  
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where μ takes the non-zero value only on the margin of the computational domain 
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where dx, dy are the minimum distances between a field point and the boundaries, and lx, ly are 

the lengths of the damping zone. 

 

2.4 Wave force calculation 

According to Newton’s third law, the force exerted by the wave on the air cushion is equal 

in magnitude to the force exerted by the pressure distribution on the wave. As shown in Fig. 2, 

the force of the pressure along the x-axis on the free surface is calculated with the x-directional 

derivative of the wave elevation, and the wave force can be obtained by integration, as in Eq. 

(15). 

 ACV xF p dxdy                               (15) 

 
Fig. 2. The force exerted by pressure distribution on the wave. 

In the absence of incident wave excitation, ζx is independent of the average cushion 

pressure p0. We use the superscript W to denote the contribution of the ship wake. Then, when 

the ship is sailing in calm water, the drag coefficient can be defined as follows: 

 
2

0

W

ACV xR

g
C p dxdy

p B


                           (16) 

When wave excitation is present, in addition to the contribution of the wake system, there 
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is a periodically varying component. The dominant part of this periodic component is the 

incident wave, whose ζx is independent of the mean pressure and is related to the wave steepness 

kA. Therefore, one can define the excitation coefficient as: 

 
0

1
ACV xw

g
C p dxdy

kA p B


                         (17) 

where ζx is a periodically varying variable that can be substituted for either the incident wave, 

the nonlinear interaction of the incident wave and the ship wake, or the sum of the two. Since 

the excitation varies periodically with time, we only take the magnitude for comparison. Among 

them, the nonlinear interaction is of special concern and we name it as the transmission 

coefficient CT, identified by subtracting the entire flow field from the incident wave and ship 

wake.  

 2

0

1 E I W

ACV xT x x

g
C p dxdy

kA p B


                       (18) 

A flow chart illustrating the procedure of the numerical implementation is presented in Fig. 

3. 

 
Fig. 3. Flow chart of the present method. 

Following the numerical approach mentioned above, we developed a Python program to 

simulate nonlinear wave elevation. Matrix operations and FFT/IFFT are implemented by the 
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PyTorch library and can be parallelized using either the CPU backend or the GPU backend. A 

significant acceleration could be achieved using the GPU backend, as illustrated in Fig. 4. The 

simulations are performed on a personal computer with an AMD 3700X CPU and an NVIDIA 

RTX2060 graphics card. For a 512 × 512 grid, it takes 0.17 s per timestep with 8-core message 

passing interface parallelism, compared to 0.02 s with a GPU backend. 

  

Fig. 4. Computation time per timestep with different backends. 

3. Results and discussion 

3.1 Model setup and convergence analyses 

Convergence tests are first conducted to ensure that the appropriate grid resolution and 

domain size are adopted in the simulations. At small Froude numbers, the wavelength of the 

ship wake can be very short, so a coarse grid may not be sufficient to model the wake. Larger 

Froude numbers correspond to longer wavelengths, which makes it difficult for disturbance 

waves to be absorbed in a small computational domain. Therefore, the wave force only achieves 

convergence when the grid is sufficiently fine and the domain is large enough. We prepared 

five sets of grids with different domain sizes and grid resolutions, as shown in Table 1. Lx, Ly 

denote the domain size and lx, ly denote the damping length, as shown in Fig. 5. Nx, Ny are the 

number of grids along the x-axis and y-axis, respectively. In Table 1, Grids 1–3 have the same 

domain size and damping length but of different grid resolutions, while Grids 2, 4, and 5 are of 

the same grid resolutions but different domain sizes. 

Table 1. Size of the computational domain and grid resolution.  

 Grid No. xL  yL  xl  yl  xN  xN   

 Grid 1 16L 16L 4L 4L 256 256  

 Grid 2 16L 16L 4L 4L 512 512  

 Grid 3 16L 16L 4L 4L 1024 1024  

 Grid 4 8L 8L 2L 2L 256 256  

 Grid 5 32L 32L 8L 8L 1024 1024  
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Fig. 5. Dimensional parameters of the domain. 

 

Fig. 6 plots the wave resistance of a constant-speed ACV in infinite water depth. As shown 

in Fig. 6(a), wave drag calculated with Grids 2 and 3 are identical, while Grid 1 shows 

inconsistencies with the other two sets of grids at low Froude numbers. In Fig. 6(b), the results 

for Grids 2 and 5 are in good agreement, and Grid 4 deviates from the results of Grids 2 and 5 

at high Froude numbers due to inadequate damping. In the figure, we consider that Grid 2 is 

fine enough to capture change in wave elevation and large enough to absorb far-field waves 

without affecting the near-field components. Unless otherwise stated, simulations in the latter 

part of the paper are carried out on Grid 2. 

  
Fig. 6. Wave resistance convergence: (a) grids with different grid spacing, (b) grids with different 

domain sizes. 

 The HOS order M is an important parameter related to computational efficiency and 

accuracy. An increase in M will exponentially reduce the truncation error of the nonlinear 

calculation, however, the computation effort will increase as well. In this paper, The discussions 

on domain size, grid resolution, and computational efficiency are based on M = 3. And it is 

verified that all numerical results shown in this paper converge at M ≥ 3 with errors within 2%.  

Among the figures shown hereafter, the case with the greatest wave steepness is an ACV 

traveling in shallow water at Fn=0.4. The wave profiles calculated with different orders M are 
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plotted in Fig. 7, where the two curves for M ≥ 3 overlap, indicating that M = 3 is adequate for 

accuracy. 

 
Fig. 7. Longitudinal slice of the wave elevation calculated by M = 1,3,5 ( 0p  = 0.0127, Fn=0.4, 

d/L=0.215) 

3.2 Waves generated by a constant-speed ACV 

To obtain the steady wave drag, the ACV accelerates uniformly from rest and then turns to 

move at a constant speed after reaching the required velocity. The wave drag coefficient is 

evaluated from the average value of the time history after the steady state. The dimensionless 

parameter 0 0 /p gp L  is defined to characterize the average pressure of the hovercraft. Figs. 

8 illustrate the wave resistance coefficient at various pressure levels, and our time-domain 

results are compared to linear theory (see Appendix A.2), experiment (Everest, 1966; Everest 

and Hogben, 1967), and CFD predictions (Bhushan et al., 2011).  

The resistance curves in Fig. 8 fluctuate with the Froude number, presenting humps and 

hollows, which was perhaps first described by Newman and Poole (1962). Wave drags obtained 

by different methods show the same tendency, with humps and hollows close in position and 

magnitude. In both deep and shallow water, the results at low pressure level ( 0 0.0001p  ) are 

almost exactly consistent with the linear solution, and CFD simulations are in good agreement 

with the nonlinear potential flow predictions ( 0 0.0127p  ), which demonstrates the validity 

of the proposed method. 

The experimental data are taken from the study conducted by Everest and Hogben (1967). 

In their work the deep water resistance is calculated from the wave pattern, while the shallow 

water resistance is estimated from the trim attitude and may contain other drag components. 

The experiment results in Fig. 8(a) are roughly consistent with the numerical simulation, but 

around resistance hump there exist some scatter points, with larger resistance than that of the 

numerical predictions. The difference may be mainly due to the fact that the experiment cannot 

obtain pure wave drag without involving the disturbance of spray, cushion pressure pulsation, 

and other interference factors. Another major cause of the discrepancy is that the numerical 

simulation assumes that the cushion pressure is a distribution with smooth edges that does not 

vary with time, which differs from the actual cushion. Since the experimental data in Fig. 8(b) 
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are derived from the trim angle, it will be impacted by a larger variety of sources (e.g. towing 

mechanism), and exhibit greater differences (Doctors, 1993). 

 

  
Fig. 8. Wave resistance coefficient for the ACV in in (a) deep water (b) shallow water. 

For a hovercraft traveling at constant speed in deep water, Fig. 8(a) demonstrates that the 

nonlinearity brought about by increasing the pressure level has virtually no effect on the wave 

drag. Wave drags obtained by the time-domain method at different pressure levels are almost 

identical to the linear prediction. However, the consistency in wave resistance does not mean 

that the wave elevation is also the same. For instance, in Fig. 9, higher cushion pressures lead 

to shorter wavelengths in the wake and cause a bulging wave to appear behind the ship. 

 
Fig. 9. Longitudinal slice of the wave elevation at different pressure levels in deep water (Fn=0.45, 

d/L=3.58) 

In shallow water, the curves in Fig. 8(b) exhibit the tendency of a leftward shift of the 

resistance hollow as the cushion pressure increases, as well as a decrease of the maximum 

resistance. Such phenomena can also be found in CFD and experimental results. Due to the 
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nonlinearity, drag in the range Fn = 0.32–0.36 will drop at a greater slope and enter the rising 

zone a little earlier after passing through the hollow. In shallow water case, Fn = 0.46 is the 

critical speed, where the depth Froude number Fd=U/ gd =1. Here the craft speed is close to 

the maximum wave velocity in shallow water, and drag is at its maximum. It should be noted 

that the ship will keep creating huge solitary waves ahead when traveling around the critical 

speed (Li and Sclavounos, 2002), which cannot be captured within the framework of linear 

theory. Since the hydrodynamics of solitary waves is subject to the tank width, the wave drag 

obtained from experiments and CFD may not be exactly the resistance in an unbounded domain. 

With high cushion pressure, Grid2 is not large enough to model the solitary wave, and Grid5 is 

adopted to bring the wave drag to convergence. Through nonlinear time-domain simulations, it 

turns out that the increase in cushion pressure will widen the velocity interval in which the 

solitary wave could appear. This phenomenon may account for the broadening of the resistance 

hump in Figure 8(b).  

For further study, we graphed the near-field wave elevation around Fn = 0.45. The 

longitudinal/transversal slices at the center of the ACV are plotted in Fig. 10. Despite the equal 

spacing of the pressures, the differences in wave elevation are not equal, which suggests the 

presence of nonlinear components that are higher than the second order. Compared to the 

longitudinal slices for 0 0.0001p  , the wave profiles are elevated fore and aft for 

0 0.0064, 0.0127p  . With the waves rising at both ends, the effects of nonlinearity on drag are 

canceled out and are not as great as the effect on wave elevation. 

 

Fig. 10. Longitudinal/transversal slices of the wave elevation in shallow water (d/L = 0.215).  

Fig. 11 shows the wave pattern for an ACV in shallow water around Fn = 0.45. As can be 

seen in Figs. 10 and 11, the wave troughs become flatter, and the wave crests become steeper 
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in higher-pressure cases, which is typical for nonlinear shallow-water waves. Figs. 11(a) shows 

that higher pressure corresponds to shorter wavelengths when Fd < 1. This might be because 

higher amplitudes result in a greater velocity for a wave of the same wavelength. In higher-

pressure cases, shorter wavelengths are required to keep the wave system moving with the ship. 

This may also account for the leftward shift of the resistance curve in Fig. 8(b). Fig. 11(d) gives 

the wave pattern for Fd > 1, and a larger wave crest is observed in front of the ACV for 

0 0.0127p  , causing resistance coefficients to be greater than the linear case. 

  

  
 

Fig. 11. Wave patterns for a steady-moving hovercraft in shallow water (d/L = 0.215). 

3.3 Waves generated by an accelerating ACV 

The cruising speed of an ACV is far above the hump speed, so maximum drag occurs during 

acceleration. Previous experimental and theoretical studies have found that peak resistance 

during acceleration will be greatly reduced in shallow water (Doctors and Sharma, 1972; 

Doctors, 1975). Consequently, it is valuable to investigate the effects of nonlinearity on 

accelerating motion.  

For validation, the resistance curve of an ACV accelerating from rest with the acceleration 

U =0.1g is calculated and compared with the linear results by Doctors and Sharma (1972) and 

Yeung (1975). A very low pressure ( 0p =0.0001) is adopted in the time-domain simulation to 
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minimize the nonlinear effects. Perfect agreement between the three methods can be seen in 

Fig. 12. Compared with previous methods, the method proposed in this paper allows the 

simulation of nonlinear effects, may be simpler to implement, and can fully exploit the 

performance of modern graphics cards, which shows a promising future. 

 
Fig. 12. Wave resistance of an accelerating hovercraft calculated by different methods. 

 

Fig. 13 shows the wave drag of an accelerating ACV at various pressure levels. When the 

acceleration is small ( 0.005U g ), the resistance curves are quite similar to steady-state 

curves, with oscillations at low Froude numbers. As the acceleration grows, the oscillations 

disappear, accompanied by the rightward shift of the humps and hollows in the curve. A 

significant reduction in resistance is observed in shallow water cases, where a higher cushion 

pressure may push the location of the humps and hollows to lower speeds. Contrary to the 

constant-speed cases, the nonlinear effect on the maximum drag is not pronounced in shallow 

water, which is probably because there is not enough time for the acceleration process to 

generate solitary waves ahead of the ship. The nonlinearity only slightly decreases the hump 

speed, and the greater the acceleration, the weaker the nonlinearity. 

  

Fig. 13. Wave resistance of hovercraft with uniform acceleration (L/B = 3/2) (a) deep water (d/L = 

3.58) (b) shallow water (d/L = 0.215). 

Examining the acceleration performance of an ACV, we mainly focus on the location and 

magnitude of the resistance hump, which determines the maximum power during acceleration. 
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We graphed the wave patterns at the hump speed in acceleration to investigate the nonlinear 

effect, as shown in Figs. 14–16. Fig. 14 illustrates that there must be a crest in the fore and a 

trough in the aft at the moment of maximum resistance. The nonlinear effect is not significant 

in cases in deep water, as shown in Figs. 14(a) and 15. The wave patterns exhibit more 

pronounced nonlinear features, with steeper crests, flatter troughs, and shorter wavelengths in 

Figs. 14(b) and 16.  

  

Fig. 14. Longitudinal slices at hump speed (a) d/L = 3.58 (b) d/L = 0.215. 

 

   

Fig. 15. Wave patterns at the hump speed for uniformly accelerating motion (d/L = 3.58). 

   
 

Fig. 16. Wave patterns at the hump speed for uniformly accelerating motion (d/L = 0.215). 

 

3.4 Nonlinear interaction between the incident wave and pressure distribution 

The existing literature, when studying the effect of incident waves on an ACV, assumes that 

the incident waves can pass through the ship wake without hindrance (Guo et al., 2018; Gao et 

al., 2021). This assumption allows the incident wave to be independent and simplifies the 
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problem. But obviously, the interaction between the incident wave and the ACV wake is 

neglected. This nonlinear interaction, which we call the transmission component in this paper, 

may manifest itself in two aspects: first, it produces excitation forces, which directly affect the 

ACV motion response; second, it changes the leakage height of the cushion, which indirectly 

causes effects on the air cushion dynamics. In this section, the forces and wave patterns caused 

by the transmitted components are investigated with regular waves as the incident wave 

excitation. 

To ensure that the time-domain method gives proper results, we derived a frequency-

domain expression using second-order perturbation theory for comparison. We consider the 

transmission force to be approximately proportional to the amplitude of the incident wave and 

cushion pressure. Therefore, a complex expression for the transmission waves is derived from 

frequency-domain equations (see Appendix A.3). Fig. 17 shows the time history of the 

transmission coefficient obtained by the two methods. The time-domain transmission 

coefficient gradually establish a periodic steady-state over time, and the steady-state amplitude 

and phase agree with the perturbation prediction. The upper half of Fig. 18 is the wave pattern 

of a randomly selected moment after the time-domain simulation reaches the steady-state, while 

the lower half is the wave pattern of the same phase according to the perturbation derivation. 

The wave patterns obtained from the two methods are in good agreement, suggesting that this 

nonlinear component may be mainly of second order. 

 

Fig. 17. Time history of the transmission coefficient (Fn = 0.6, λ/L = 0.76, kA = 0.005, d/L = 0.215). 

 

Fig. 18. Wave pattern of the transmission component calculated by different methods. 
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Figs. 19 and 20 present the wave force coefficients calculated by the perturbation method 

under different Froude numbers and wavelengths. Because the incident force is approximately 

proportional to the cushion pressure, and the transmission force is proportional to the square of 

the cushion pressure, the ratio of the transmission force to incident force is determined by the 

dimensionless factor 0p . Figs. 19 and 20 indicate that the nonlinear interactions are stronger 

in shallow water than in deep water. These nonlinear effects are more significant in cases with 

low speeds and short wavelengths. Due to the high cruising speed (Fn > 1) of the ACV, the 

transmission force coefficient generally accounts for a very low proportion of the wave force. 

That is, excitation from the transmission component can be considered negligible while sailing 

at cruising speed. 

 

Fig. 19. Wave force coefficients as a function of incident wavelength (d/L = 3.58, 0 0.0127
        0.0100
p  ). 

 

Fig. 20. Wave force coefficients as a function of incident wavelength (d/L = 0.215, 0 0.0127
        0.0100
p  ). 

Wave force is not the only element responsible for the motion of the hovercraft in waves, 

as wave elevation below the hull also plays a role. In the cushion system, a gap between the 
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skirt and the water surface allows the air to leak out, and this distance is called the leakage 

height. In a regular wave, the leakage height varies periodically, and the air cushion system is 

no longer steady, resulting in heave and pitch motions (Reynolds et al., 1972). In addition to 

the incident wave system, the transmission wave system may also affect wave elevation. Fig. 

21 illustrates the amplitude of the transmission patterns, where A is the amplitude of the incident 

wave, and 0p  is the dimensionless pressure. The wave elevation of the transmission 

component is mainly reflected on the aft side of the hull and the wake. The effects of the 

transmission component in shallow water are slightly more significant than those in deep water. 

Several similarities between the transmission waves and the ACV wakes can be seen in Fig. 21: 

the transmission waves consist of divergent and transverse waves and are contained within a 

certain angle following the ACV. The dimensionless factor 0p  is typically in the range of 

0.01–0.02, so the height of the transmission waves may reach 7–20% of the incident wave 

height. We hope that this part of the work may serve as a reference for future work on the 

motion response of the ACV in waves. 

   

   

Fig. 21. Transmission wave amplitude patterns in different incident wave length (a)–(c) d/L = 0.215, 

0 0.0127p  , Fn = 1.5 (d)–(f) d/L = 3.58, 0 0.0127p  , Fn = 1.5. 

4. Conclusions 

This paper set out to investigate the nonlinear effects of cushion pressures on the ACV 

wake system. In the study, we simplified the ACV into a predefined pressure distribution, 

without taking splash and skirt-water contact into account. For the nonlinear wake of the 

pressure distribution, we extended the HOS method in an earth-fixed coordinate system to 

perform time-domain simulations. An attention mechanism was applied to reconstruct the 

computational domain and absorb far-field disturbance waves so that the ACV would remain 
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at the center of the domain. These techniques considerably reduce the computation effort. When 

we perform the calculations on the GPU, it takes only 0.02s per timestep with a 512 × 512 grid. 

For verification, we also derived the perturbation solutions of ACV wakes in a moving 

reference system, see Appendix. 

The nonlinear method was subsequently used to investigate the nonlinear waves generated 

by an ACV. For a constant-speed ACV in calm water, the low-pressure results predicted by the 

nonlinear method are in perfect agreement with the linearized solution, while the high-pressure 

results show more nonlinear features. Simulations suggest that the nonlinearity is more 

pronounced in shallow water and low-speed cases. If the nonlinear effects of cushion pressure 

are considered, the wake system exhibits shorter wavelengths, steeper wave crests, and flatter 

wave troughs than the linear predictions. The nonlinear effects on wave drag are not as 

significant as those of wave elevation. Wave resistance in deep water is virtually unaffected by 

nonlinearity. In shallow water, nonlinearity causes the resistance hump to become broader and 

lower in the resistance-velocity curve. Similar findings were also described by Bhushan et al. 

(2011). 

For accelerating motion, the time-domain approach in the paper is shown to yield results 

consistent with the linear predictions proposed by previous researchers (Doctors and Sharma, 

1972; Yeung, 1975). The presence of acceleration shifts the resistance hump and hollow 

towards higher Froude numbers and significantly decreases the peak resistance in shallow water. 

As an extension to the published literature, this paper also investigates the nonlinear effect in 

the acceleration motion. Numerical simulations demonstrate that wave nonlinearity barely 

affects the deep-water acceleration resistance. In shallow water, contrary to the significant 

resistance drop observed in constant-speed cases, the nonlinear resistance curve does not differ 

much from the linear predictions for acceleration motion. This could be explained by the fact 

that the acceleration process does not take enough time to generate the solitary wave in front of 

the bow. In shallow water, the nonlinearity shifts the resistance hump slightly to the left during 

acceleration, and the greater the acceleration, the weaker the nonlinear effect. 

For the ACV in waves, we have identified and studied the nonlinear transmission 

components resulting from interactions between the incident wave system and the ACV wake 

system. The nonlinear time-domain simulations were compared to our derived frequency-

domain perturbation solutions. The results obtained by the two methods are in good agreement, 

which validates the time-domain approach and suggests that a major component of the 

transmission components is of second order. For a cruising ACV, the presence of this wave 

component does not strongly affect the wave force but contributes to periodic variation in wave 

elevation on the aft side of the ACV, eventually influencing the motion response. 
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The nonlinear effects on the accelerating motion and the transmission components are here 

investigated for the first time. We hope that the findings may provide guidance for the resistance 

and sea-keeping performance of ACVs. An air cushion system is a complex system impacted 

by the fan, skirt, wave surface below, air compressibility, and other features. The pressure 

pulsates during navigation, particularly in regular waves. However, the ACV in this paper is 

idealized as a time-constant pressure distribution. In the future, the time-varying model of 

cushion pressure distribution with fans and air leakage considered may be added to the proposed 

method, so that the coupling effects of pressure distribution, motion response, and wake pattern 

can be considered, eventually obtaining more realistic results. 

 

Appendix. Perturbation derivation 

A.1 Basic equations 

Consider a pressure distribution moving along the x-axis at speed U, boundary conditions 

under the moving reference frame are written as: 

 · 0t x zU on z        x x                    (1) 
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where p represents the pressure distribution of an ACV. By operating material derivative D/Dt 

on Eq. (1), we obtain: 

 

22 2 2

1
( )

2
 

1
( )

0

tt xt xx t x

z

x

U U

g on z

Up p

      

    




       

      

   



x x

         (3) 

In order to identify the effects of the pressure term and the incident wave, the formal 

expressions are substituted to Eq. (1) and Eq. (3): 
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                (4) 

where terms with α indicate the contribution of the pressure term, terms with β indicate the 

contribution of the incident wave. Here β is the independent small quantity proportional to the 

surface slopes. 
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Now expand Eq. (1) and Eq. (3) in Taylor series about z=0, and combine the terms with 

coefficients of αβ j. The terms in α, β give the following equations respectively 
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and terms in αβ gives 
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where 
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A.2 Solutions of the first order equation 

Eq. (5) basically describes the Airy wave in a moving reference system, whose general 

solution is 
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where 
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 When the motion is steady, time derivative terms in Eq. (6) can be eliminated. The 

combined free-surface condition could be modified to 

10 2 10 10 10  0z xx x x

U
g U U p on z   


                     (11) 

The form of Eq. (11) is exactly the same as that given by Doctors (1993) , which represents 
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the linearized steady flow field. Here an artificial viscosity term μ is introduced to help control 

the dissipation of far-field waves (DePrima and Wu, 1957). The solution can be derived by a 

double Fourier transform as below 
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where 

 2 2 2 2 2tanhkl g k l k l d                           (13) 

A.3 Solutions of the second order equation 

ϕ 11 gives a second-order approximation of the interaction between the steadily-moving 

ACV and the incident wave. When the incident wave is regular, the potential function ϕ 11 varies 

periodically. We transform Eq. (7) into the frequency domain with artificial viscosity terms 
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Finally, the solution of the second-order interaction term could be derived by a double 

Fourier transform 
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