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ARTICLE INFO ABSTRACT

Keywords: This study develops a novel fully nonlinear potential flow approach for predicting the seakeeping
Fully nonlinear potential flow performance of the KRISO Container Ship (KCS). We utilize a spectral coupled boundary
KRISO Container Ship element method for enhanced numerical efficiency and an acceleration potential-based technique
Seakeeping for six degrees of freedom (6-DoF) motion calculation, together facilitating accurate simulations
Motion response of ship-wave interactions. An overset mesh technique and an automated mesh-cutting process are
Parametric rolling introduced to accurately model instantaneous boundaries. Convergence analyses are conducted

to validate the proposed method. Simulations of heave and pitch responses in head waves show
good agreement with experimental and computational fluid dynamics results in literature, also
demonstrating the nonlinear effects of large incident waves on ship motion. Moreover, the method
accurately simulates parametric rolling and reveals the coupling effect between roll and other
DoFs.

1. Introduction

Seakeeping performance, reflecting a ship’s ability to function effectively at sea, is crucial for ship design and
operation. Precise analysis of a ship’s motion and forces in waves not only helps in designing vessels that are more
comfortable and energy-efficient but also guides their safe navigation. This leads to fewer maritime accidents, better
energy efficiency, and increased operational reliability. Such advancements require an in-depth understanding of ships’
hydrodynamic behaviors. Thus, developing accurate and reliable seakeeping prediction methods carries significant
value in naval architecture and ocean engineering, both theoretically and practically.

Model tests are often considered the most reliable approach to studying seakeeping performance. Through
experiments with scaled ship models in controlled settings, researchers can meticulously examine the ship’s behavior
under specific wave conditions. Over the years, numerous seakeeping tests have been conducted on various benchmark
models. Distinct from ship hulls like Wigley and Series 60, the KRISO Container Ship (KCS) model has more of the
characteristics of a modern ship, with complex designs such as bulbous bows and transom sterns. Simonsen et al. (2013)
studied the KCS’s motions and resistance in calm water and head seas through experimental studies. Sadat-Hosseini
et al. (2015) investigated the effects of different wave headings on the KCS’s motion response and added resistance.
Wa et al. (2020) examined the forces, motion responses, and wake fields of the KCS in waves. Shivachev et al. (2020)
assessed the added resistance and motion response of the KCS under varying trim angles. Apart from motion response
and added resistance, parametric rolling, a severe nonlinear phenomenon characterized by large amplitude rolling due to
parametric resonance in head seas, also has gained extensive research focus. Yu et al. (2018) conducted experiments on
parametric rolling in both regular and irregular head seas, proposing early detection algorithms and rudder stabilization
strategies. Tello Ruiz et al. (2019) delved into the parametric rolling phenomenon of the KCS hull in shallow water,
employing both numerical and experimental methods to uncover the influence of shallow water on parametric rolling
dynamics.

While model tests stand as a highly reliable approach for seakeeping analysis, its drawbacks include high costs, time
requirements, and potential limitations in capturing hydrodynamic characteristics. Consequently, numerical simulation
emerges as a cost-effective and accessible alternative for seakeeping studies. A prevalent technique in engineering
for seakeeping forecast employs the linear potential flow method. For instance, Bhatia et al. (2023) used the strip
theory software MaxSurf to predict the heave, pitch, and roll of the KCS under various speeds and wave headings.
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Liang et al. (2024) conducted an investigation into the time history of ship wakes detected by a stationary observer
as ships passed by. Xu et al. (2023) applied a frequency-domain, three-dimensional pulsating and translating Green’s
function to obtain the motion response of various ship hulls, including the KCS. However, the linear potential flow
theory merely assumes small disturbances by minor incident waves near the average wetted surface of the hull, which
diverges significantly from real-world. It neglects the disturbances caused by the steady ship wave on the free surface
and the nonlinear effects of large incident waves and scattered waves, resulting in inaccuracies in simulating the motion
response and capturing nonlinear phenomena such as parametric rolling. Therefore, researchers have devised several
weakly nonlinear potential flow methods that incorporate factors such as steady ship wake and wetted surfaces. France
et al. (2003) calculated Froude-Krylov forces and hydrostatic restoring forces on the instantaneous wetted surface,
effectively simulating the parametric rolling of the C11 container ship. Zhang et al. (2018) achieved an accurate
simulation of the KCS’s motion response through a nonlinear time-domain potential flow method. Moreover, Zhang
et al. (2023a) explored the parametric rolling characteristics of the KCS using a time-domain potential flow approach.

On the other hand, the Computational Fluid Dynamics (CFD) method that solves the Unsteady Reynolds-
Averaged Navier-Stokes (URANS) equations, inherently accounts for viscosity effects and can robustly simulate strong
nonlinearities, marking it as a crucial tool for seakeeping research. Many of the experimental studies mentioned above
have employed URANS simulations for validation purposes (Simonsen et al., 2013; Sadat-Hosseini et al., 2015; Wu
et al., 2020; Shivachev et al., 2020). Sulovsky et al. (2023) evaluated the accuracy of seakeeping predictions between
the potential flow software WASIM and an OpenFOAM code using the URANS method, showing that WASIM’s
motion predictions deviated by about 30% from the experimental results, while OpenFOAM’s predictions were in
close agreement with the experimental data. Yu et al. (2023) performed simulations of the motion response and added
resistance in different wave directions using the Spectral Wave Explicit Navier-Stokes Equations method. Furthermore,
Wang et al. (2019); Wang (2020) investigated the parametric rolling of the KCS and the coupling effects of different
modes with the in-house CFD code HUST-Ship.

In recent years, the Fully Nonlinear Potential Flow (FNPF) method has witnessed significant advancements.
Compared to the linear or weakly nonlinear potential flow methods mentioned above, the FNPF method simulates
the changing instantaneous wetted surface and nonlinear free surface in the time domain, which more closely aligns
with physical reality. Compared to CFD methods that solve the N-S equations, the FNPF method simplifies the
governing equations to the Laplace equation by by ignoring viscosity, thus striking a balance between computational
efficiency and accuracy. Pacuraru et al. (2020) evaluated seakeeping simulations of the KCS using strip theory, FNPF
software ShipFLOW Motions, and URANS software NUMECA, noting an increased significance of nonlinearity on
motion response with higher speeds and wave heights. Studies by Coslovich et al. (2021) and Irannezhad et al. (2022)
explored ship motion and resistance in waves using SHIPFLOW, while Tang et al. (2021) applied FNPF for simulating
container ship motion in irregular waves. And Zhang et al. (2023b) studied the seakeeping of Wigley and S175,
respectively. Furthermore, Tong et al. (2024) developed an adaptive harmonic polynomial cell method for nonlinear
wave-structure interaction simulations. Although these FNPF methods have significantly outpaced URANS in terms of
efficiency—improving by two to three orders of magnitude according to Irannezhad et al. (2022)—they still necessitate
considerable computing time. For example, Tang et al. (2021) required 2-4 hours of parallel computing on a 6-core
CPU for simulating a wave period using around 10,000 grids, and Irannezhad et al. (2022) needed 20 to 80 core-hours
for a simulation with about 40,000 grids. This extensive computation is due to the FNPF method’s requirement to
account for the evolving free surface and wetted surface, solving the potential flow’s boundary value problem (BVP)
at each time step. To address this computational challenge, Shi et al. (2023) proposed a spectral coupled boundary
element method (SCBEM) that introduces high-order spectral (HOS) methods to decompose the BVP, simplifying the
boundary element method’s (BEM’s) solution and significantly enlarging the nonlinear computational domain while
reducing the simulation time.

In light of the limitations of existing research, this paper aims to develop an FNPF method for accurate seakeeping
simulations. Building on previous work with the SCBEM, this work introduces an acceleration potential method
for the stable simulation of ships’ six degree of freedom (6-DOF) motions, complemented by an automatic mesh
method for modeling instantaneous surfaces. The simulations focus on the KCS hull’s motion response in head seas. A
thorough convergence analysis concerning mesh resolution, timestep size, and spectral coupling parameters confirms
the method’s validity. Remarkably, this method reduces the FNPF simulation time for a single wave period to less than
one minute, while accurately predicting both the motion response in regular head seas and the parametric rolling of the
KCS. This study of the KCS’s parametric rolling using the FNPF method represents a novel contribution. Additionally,

K. Shi et al.: Preprint submitted to Elsevier Page 2 of 24



Simulation of ship motion response in head seas using a fully nonlinear potential flow method

it explores the nonlinear effects of incident wave heights on motion response and the coupling effects between different
motion modes during parametric rolling.

2. Fully nonlinear potential flow method

2.1. Coordinate systems
In this study, we employ two distinct coordinate systems to elucidate the flow field characteristics and the forces
exerted on the ship hull:

o Earth-fixed coordinate system O—xyz: The origin of this coordinate system is situated at the calm water surface,
with the z-axis oriented vertically upward. This stationary coordinate system is employed to describe the flow
field, including the velocity potential and the wave elevation.

e Body-fixed coordinate system O’—x’y’z’: This coordinate system is attached to the ship hull and moves with the
hull’s oscillatory motion. The x’-axis is directed toward the bow, while the z’-axis extends vertically upward.
This system is utilized for computing the 6-DoF motion equations of the ship.

At the initial instant, the two coordinate systems are aligned. To differentiate between them within this paper, the
superscript / is employed to signify quantities measured in the body-fixed coordinate system.

2.2. Governing equation and boundary conditions
In the context of a homogeneous, inviscid fluid and assuming irrotational flow, a velocity potential function ¢ exists
that fulfills the Laplace equation:

V=0 M
The velocity field can be expressed as the gradient of ¢:
Vo(x,y,2) = (u, v, w). 2

Presuming that the free surface remains non-overturning, the wave elevation can be represented as a single-valued
function ¢(x, y) in the horizontal plane. On the free surface, { and ¢ must satisfy the following kinematic and dynamic
conditions:

i a
a_fza_‘f—vm-vxg on S, 3
0 V|2

a_(f=_—| fl — gl onS; @)

where V, = (d/0dx,d/0dy) is the horizontal gradient operator, g the gravitational acceleration, and .S the free surface.
In a fully nonlinear simulation, the free surface’s position varies temporally. Since Eq. (4) yields only the spatial
derivative of the velocity potential from an Eulerian perspective, it necessitates an additional step to compute the
temporal derivative of the velocity potential along the dynamic boundary. To address this, the velocity potential at the
free surface, ¢°(x,y) = ¢(x,y, C(x, y)), is introduced. By substituting ¢ into the free surface boundary conditions
and applying the chain rule, one derives the Zakharov form of these conditions (Zakharov, 1968):

0 0
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For the submerged hull surface, denoted as .S}, the fluid cannot penetrate the hull:

%z(U+er)-n on S, )
on
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where U and @ represent the translational and rotational velocities of the ship, respectively, and r and n denote the
position vector on the hull’s surface and the outward unit normal vector, respectively.
In addition, the flow field must satisfy the deep-water bottom boundary condition:
0
ﬁ =0 asz—o - (®)
0z
Equations (5)—(8) collectively constitute the boundary conditions within the FPNF framework. Given the initial
wave elevation ¢ and the velocity potential at the free surface ¢°, the evolution of nonlinear waves can be simulated by
numerically integrating ¢ and ¢ over time using methods such as the Runge—Kutta method. To calculate the d¢p/0z
term in Eqs. (5) and (6), one must solve the following BVP:

(v2g =0 in the fluid domain
¢ = ¢S on Sf
P
12 _wioxnn on S, ©)
on
% =0 as z -» —oo
| 0z

This paper employs the SCBEM (Shi and Zhu, 2023a) to solve the aforementioned BVP, which will be elaborated
upon in Section 3.3.

2.3. Six degrees of freedom motion calculation
Considering the ship as a rigid body, its 6-DoF motion in the body-fixed coordinate system adheres to the Newton—
Euler motion equations:

U/
’ ’ ’ _ ’
F, water T F gravity +F others — [M] 0/ + Fcc (10)

Here, [M] is the mass-inertia matrix in the body-fixed coordinate system, U’ and €’ denote the acceleration and
angular acceleration in the body-fixed system, respectively, and F C/ . accounts for the Coriolis and centrifugal forces:

;[ mex —mG¥ e v’
me* Q% Q% (I, —me*cX)| |2

e = (11)
where m is the rigid body mass, I, is the moment of inertia about the center of mass, while ¢* and Q* are the matrix
representations of cross products for ¢’ and €', respectively.

The external forces acting on the ship include the fluid pressure F‘; gravity F' and other constraint forces

ater’ gravity’

F (; thers- 1 fluid pressure is determined by integrating the pressure over the wetted surface of the hull:

' _ n’ _ 1 2 n'
Flyer = //S » [,/X,,/] ds=p //S b (~ -5 1V —e2) [,/Xn,] ds (12)

where ¢, = 0¢ /0t is the time derivative of the velocity potential. It is evident that ¢, should satisfy the Laplace
equation. For the sake of numerical simulation stability, this study calculates ¢, by solving the BVP. Differentiating
both sides of Eq. (7) in the body-fixed coordinate system with respect to time, we obtain:

%(n-Vd)):%(n’-(U’+.Q/><r/))=n’-(U’+Q’><r’) (13)
Expanding the left-hand term of Eq. (13), we derive:
d dn dVe¢
L n-vo)=Ve- -2 el
g VO =N
oV
=V¢-(2Xn)+n- <a—t¢+(Vb-V)V¢> (14)
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where ¥, = U + Q X r denotes the velocity of a point fixed in the body-fixed coordinate system as observed from the
earth-fixed coordinate system. Substituting Eq. (14) into Eq. (13) and integrating with the free surface condition from
Eq. (4), we establish the Dirichlet condition for the free surface and the Neumann condition for the body surface to
obtain ¢;:

1
¢ =gl -3 IVol* on S,

o,
on

(15)
=n’-(U'+Q'xr’)—ai(Vb-v¢) on S,
n

In Eq. (15), n’ - (U’ + @' x r') represents the influence of the body’s acceleration in the body-fixed coordinate
system. The term d(V;, - V¢)/0n denotes the impact caused by the movement of the body boundary in the earth-fixed
coordinate system, which is analogous to the m term in those frequency domain simulations. There are two numerical
challenges when using Eq. (15) to solve for ¢,: the first is the interdependence between ¢, and acceleration. Calculating
¢, requires known acceleration, yet Eq. (10) necessitates fluid force to determine acceleration. The second challenge
is that d(V;, - V¢)/0n involves the second-order derivatives of the velocity potential, which can be difficult to calculate
accurately numerically.

To solve ¢, with precision and stability, we adopt a method based on the concept of acceleration potential (Cointe,
1991; Wu and Eatock Taylor, 1996), decomposing the d¢/dt term into six modal velocity potentials related to
acceleration and one residual velocity potential:

T/

b=ler @2 o @ [g,]+¢7—%-V¢ (16)

where @;_g are the acceleration potentials for six modes, satisfying the Laplace equation and the respective boundary
conditions:

;=0 onS,
09, , i=1,.,6 17)
— =n; onlsS,

on

where n; is the generalized normal vector. Here, (1, n,, n3) = n denotes the outward normal vector of the hull surface,
and (ny, ns, ng) = r X n denotes the moment vector.
@7, as the residual, satisfies the following boundary conditions:

1
¢7==8 - 51V’ + ¥, - Vo onS,
]
on

Substituting the decomposition from Eq. (16) into the pressure integration of Eq. (12), the water pressure in the
body-fixed coordinate system is now expressed as:

(18)
=0 on Sb

U/
Fv,vater = Fv,v = [l [Q’] (19)

where [u] is the added mass matrix. The element y; j of matrix [u] in the ith row and jth column is given by:

,uij=// p;jndS (20)
Sp

and F] is the part of the fluid pressure that is independent of acceleration:

r _ . _ _1 2 [
Fl=p //S(Vb Vo - gy~ 21Vl - g2) _,,Xn,]ds @)

Finally, the 6-DoF motion acceleration of the object is decoupled:

.

F/+F' . +F —F. =((M]+]p) [g, (22)

gravity
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2.4. Wave generation and absorption

As depicted in Fig. 1, the methodology presented in this paper implements a wave-making zone upstream and
a wave-damping zone downstream to facilitate the generation and absorption of waves. In the wave-making zone
upstream, the velocity potential and wave elevation are relaxed toward the theoretical solution at each time step, utilizing
a ramp function for modulation:

g g + R(x)(C[he()ry - C)
¢S = ¢+ RGPS, — D)

theory

(23)

Here, {ipeory and ¢'§160ry represent the prescribed wave elevation and velocity potential, respectively. For the regular

wave conditions considered in this study, we employ the fifth-order deep-water Stokes wave function. R(x) denotes
the ramp function, defined as:

3x —3x 8
R(x)=exp| — <l—gen> (24)
gen
where /4, is the length of the wave-making zone, and x,, is the central coordinate of this zone along the x-axis.

In the wave-damping zone downstream, a Rayleigh viscous term is introduced into the free surface dynamic
condition to dissipate the waves:

0pS  L+IVLP (09 IV, 52 S
7‘7(&) BE e @

where v signifies the Rayleigh viscosity. Within the damping zone, the viscosity coefficient v increases quadratically
relative to the distance from the start point of the wave damping zone, Xgqpp:

v(x) = vy(x — xdamp)2 (26)

. damping function z ramp function

/o Xem |

wave direction

Figure 1: Schematic of the wave-making and damping zones.

3. Numerical implementation

3.1. Discretization of free surface nodes

This study utilizes discrete collocation points to represent the non-linear free surface. As a vessel progresses, the
boundary topology of its associated flow field experiences temporal changes. To capture this dynamic behavior, our
research implements the overset mesh technique to model the flow field of a ship in motion within an earth-fixed
coordinate system. As shown in Fig. 2, the nodes located at a distance from the ship, referred to as background nodes,
are arranged equidistantly and maintain fixed horizontal coordinates throughout the simulation, remaining static over
time. In contrast, near the ship’s hull, the free surface is not discretized by background nodes but by a set of unstructured
points termed component nodes, which are generated automatically during the simulation.

To enhance the resolution of flow field details near the ship, component nodes are placed with a higher density
than background nodes. The transfer of flow field information between different grids at each time step is achieved
through radial basis function (RBF) interpolation techniques. Here, the thin-plate spline is chosen as the basis function.
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Figure 2: Distribution of free surface nodes at different times during ship navigation.

For each interpolation node, we use sample points within a radius of 3.5 grid lengths to construct the RBF surface
for interpolation. In addition, wave breaking may occur in the numerical simulation, leading to potential flow model
collapse. To maintain simulation, this study adopts a pre-breaking wave strategy by identifying nodes where the free
surface mean curvature exceeds 1.8 as potential wave breaking points. These points are excluded during RBF surface
construction to supress wave breaking. See Shi and Zhu (2023a) for more details.
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Figure 3: Schematic diagram of computational domain reconstruction.

In ship navigation simulations, using a fixed computational domain tied to an earth-fixed coordinate system poses
a problem: the ship would eventually leave the simulation area. To address this issue and allow for longer simulations,
our approach incorporates a dynamic tracking mechanism for the ship’s centroid. This mechanism is activated when
the ship’s centroid moves more than one grid length away from the domain’s center. Upon such deviation, a domain
reconstruction process is initiated, which entails the deletion of background nodes that no longer align with the ship’s
trajectory and the generation of new background nodes in the ship’s forward path, as shown in Fig. 3. In this way, the
computational domain effectively achieves overall movement by selectively adding and removing nodes, rather than
shifting the entire grid. This approach helps maintain computational accuracy, avoiding the errors that would come
with simply moving the grid.

3.2. Update of instantaneous boundaries

In nonlinear potential flow simulations, the boundaries of the flow field, including the free surface and the
instantaneous wetted surface, continuously change. Traditional methods typically adopt an explicit approach to track
the movement of waterline nodes and determine the specific shape of the instantaneous wetted surface and free surface
based on the waterline. However, this practice not only is challenging to apply to ship hulls with complex shapes but
also tends to induce numerical instability. Contrary to these methods, our approach does not directly monitor waterline
nodes. Instead, it implicitly determines the shape of the waterline based on the ship’s attitudes and the free surface’s
position.

Figure 4 illustrates the process of updating the waterline using the method proposed in this study. We discretize the
free surface with a set of scattered points. The wave elevation ¢ and the velocity potential ¢° on the free surface are
updated according to the Zakharov form of the free surface conditions, as specified in Egs. (5) and (6). This method
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Figure 4: Schematic of waterline update steps.

allows the nodes to move vertically with the free surface, while their horizontal movement is restricted. Consequently,
even though the flow field for the next timestep is computed, it is still represented using the grid from the previous
timestep. This can lead to a mismatch between the grid and the actual boundaries for the upcoming timestep.

To address this, we apply RBF interpolation to the free surface on a uniform grid at the end of each timestep.
Specifically, for each edge node within the voids uninterpolated due to the hull’s presence, we construct an RBF
surface using surrounding sample points in a 7 X 7 grid and extrapolate to determine the node’s value. This iterative
process continues until all voids are filled, resulting in a seamless virtual free surface, as illustrated in Fig. 5. The full
hull mesh is intersected with this virtual free surface to establish the new waterline for the upcoming timestep. Based
on the position of this waterline, the method automatically generates nodes for the free surface component outside
the waterline and a mesh for the wetted surface below it, accurately reflecting the current physical boundaries. These
meshes are then employed in the numerical calculations.

':?z;.,

s =3

T

22575 508
~5{o.%

e
e
Y

Figure 5: Progressive interpolation of virtual free surface.

Figure 6 depicts the algorithm used in this study to determine the instantaneous wetted surface panels. As
demonstrated in Fig. 6(a), the process begins by vertically projecting the vertices of all panels onto the virtual free
surface to identify the intersection points with the panel edges. If an intersection occur close to a panel vertex, that
vertex is moved to the intersection. In cases where a vertex is proximate to several intersections, illustrated in Fig. 6(b),
we reposition it to the median of these points. This adjustment of nodes ensures that most panels, which previously
intersected the free surface, now have vertices exactly aligned with it, thereby reducing further intersections. Any
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Figure 6: Procedure for generating the instantaneous wetted surface mesh.
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Figure 7: Instantaneous wetted surface mesh produced by the proposed method.

remaining panels that continue to intersect the free surface are then subdivided. Figure 7 showcases the success of this
approach in creating an instantaneous wetted surface.

3.3. Spectral coupled boundary element method

Conventional BEMs necessitate the reconstruction and resolution of the boundary integral equation at each time
step to accommodate the evolving boundaries. This process becomes exceedingly time-consuming when dealing with
a large number of unknowns on the free surface. To improve efficiency, this paper adopts the SCBEM to solve the BVP
of Eq. (9).

SCBEM leverages the linearity of the Laplace equation to split the mixed Dirichlet-Neumann BVP into two
simpler sub-problems. It begins by defining a rectangular region around the ship body, termed the coupling region,
and introduces a transition function 7 :

1-T,T in the coupling region
T = o pieTe 27
1 outside the coupling region

Within the coupling region, T, and T), are given by:
4d
T, = e (2% Z2) 41
2 I,
4d
Ty=l erf (= -2)+1
2 L,
where erf is the Gauss error function, d,, and d,, are the distances from a point to the nearest horizontal boundary along

the x-axis and y-axis, respectively, while /, and ly denote the widths of the transition zone, as shown in Fig. 8. The
transition function 7 remains zero within the interior of the coupling domain and smoothly transitions from O to 1

(28)
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Figure 8: The distribution of the transition function within the coupling region.

within the transition zone. Utilizing this transition function, we can define a sub-problem as follows:

Vipy =0 in the fluid domain

by =TP° on Sy, (29)
0
;i)H = as z — —oo
z

Here, S, is the virtual free surface shown in Fig. 4. In this BVP, the velocity potential ¢S is undefined in the void
caused by the presence of the ship hull, but since the transition function value is zero there, the Dirichlet condition can
be treated as zero. Equation 29 presents a pure Dirichlet problem, which we refer to as the spectral layer. The spectral
layer’s Dirichlet problem is efficiently solved using a high-order spectral method (Dommermuth and Yue, 1987) with
a time complexity of O(N log N).

Substituting the spectral layer velocity potential ¢ from Eq. (29) into Eq. (9), we determine the residual boundary
conditions solved by the BEM:

Vipr =0 in the fluid domain
¢r=(1-T)$" on S,
0 0
) ﬂ:—ﬁ+(U+er)-n on S, (30)
dn on
0dg
— =0 as z - —o0
| 0z

The desingularized Rankine source method is used to solve for ¢p&, with detailed numerical implementation in Shi and
Zhu (2023a). The sum of ¢ and ¢ yields the velocity potential that satisfies the boundary conditions of Eq. (9).

Figure 9 depicts the SCBEM’s decomposition strategy, where boundary colors reflect the magnitude of boundary
values, and the gray area denotes a zero boundary value. The figure demonstrates that the introduction of a spectral
layer significantly simplifies the original large-scale free surface Dirichlet-Neumann mixed BVP. Consequently, when
using the BEM, there is no need to place Rankine sources throughout the entire domain, which substantially reduces
computational efforts. In this paper’s method, Rankine sources are only placed within the coupling region. The
convergence analysis in Section 4.4 will confirm the validity of this approach.

4. Convergence analysis

4.1. Simulation setup
The numerical simulation focuses on the KCS model. In this study, propellers and rudders are not considered. Table
1 details the KCS hull’s principal dimensions.
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Figure 9: Decomposition strategy of the spectral coupled boundary element method (SCBEM), with colors indicating
boundary value magnitudes.

Table 1
Principal dimensions of the KRISO Container Ship (KCS).
Principal Dimension Symbol Value
Length between perpendiculars L,, (m) 230
Maximum beam of waterline B (m) 32.2
Draft D (m) 10.8
Displacement volume vV (m?) 52030
Block coefficient G, 0.6505
Longitudinal center of buoyancy leb (%L,,) -1.48
Vertical center of gravity (from keel) KG (m) 7.28
Moment of inertia K../B 0.324
K,/L,, 0.250

In the simulation, the ship is centrally placed within the computational domain. Artificial soft springs are applied
in the surge DoF to permit free surge movement. The ship is unrestrained in heave and pitch DoFs. It begins from rest,
accelerates to its design cruise speed corresponding to a Froude number of F, = 0.26 with an acceleration of 0.1g,
and then proceeds at constant speed. Subsequently, the wave-making zone starts generating regular head-sea waves.
For the convergence analysis, the incident wave has a wavelength of 4/L,,, = 1.15 and a height of H = 0.4 m.

4.2. Mesh resolution dependency

Three sets of meshes with different densities are used to assess mesh independence. Figure 10 illustrates the hull
mesh and the initial distribution of near-field free surface nodes for these meshes. Table 2 provides the node and panel
counts for each mesh.

Figure 11 shows the heave and pitch motion time histories simulated with the different meshes. The medium and
fine meshes yield nearly identical results, while the coarse mesh produces slightly lower motion response amplitudes.
Compared to the heave motion, pitch motion is more sensitive to mesh resolution, showing greater discrepancies across
the meshes.
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Figure 10: Hull surface panels and free surface node distributions at varying mesh resolutions.

Table 2

Mesh parameters for three different resolutions.

Fine
6612

Medium

3520

Coarse
1812

Number of hull surface panels

512x512
120 m
860

7.2 m

512x512

512x512
21.0 m
230

Number of background nodes

16.0 m
448
9.6 m

126 m

Spacing between background nodes

Number of component nodes
Spacing between component nodes
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Figure 11: Time history of motions with different mesh resolutions.

The motion time histories depicted in Fig. 11 are not simple harmonic due to the disturbance waves created by the

ship’s acceleration from rest and the time required to reach a periodic steady state after encountering incident waves.

For the subsequent response amplitude operators (RAOs) analysis

simulation will be selected for Fourier analysis.

only the results approaching a steady state in the

s
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Figure 12: Motion time histories for different timestep sizes.

Table 3

Courant numbers and wave period to timestep ratios for various timestep sizes

Timestep size At Courant number UAt/Ax Wave period/timestep T /At Encounter period/timestep T,/At
0.15s 0.193 86.8 54.0

0.30 s 0.386 43.4 27.0

0.60 s 0.772 21.7 13.5

4.3. Timestep size dependency

Simulations with varying timestep sizes were conducted based on the medium mesh. Table 3 lists ratio of the
wave period to the timestep size, along with the Courant number, which is the ratio of the ship’s travel distance per
timestep to the spacing between component nodes. In table 3, the natural period of the wave is denoted as 7', while
the encounter wave period is denoted as T,. In the present method, the simulation is conducted in the earth-fixed
coordinate system, with incident waves propagating forward according to their natural periods. Hence, the timestep
size for simulating the incident wave field is related to the natural periods. Meanwhile, the scattered waves generated by
the ship under the excitation of incident waves, as well as the ship’s own motion, correspond to the encounter period.
Therefore, the timestep size for simulating the motion is related to the encounter period. Figure 12 shows the time
histories of the motion, demonstrating that the proposed method achieves rapid temporal convergence. The motion
amplitudes from simulations with different timestep sizes are in good agreement. The minor discrepancies in the time
histories at a timestep size of At = 0.6 s can be attributed to two factors: firstly, at this timestep size, there are only 13.5
timesteps within one encounter period, which may lead to larger errors in time-domain integration; secondly, a Courant

number exceeding 0.5 may result in more significant mesh variations between consecutive timesteps and diminishes
the accuracy of extrapolation (Shi and Zhu, 2023b).

4.4. Spectral coupling parameter dependency

The method used in this paper is based on the SCBEM, which simplifies the BVP in fully nonlinear simulations
by introducing a spectral layer. It solves equations only within the coupling domain, avoiding the need to solve for all
far-field discrete nodes. This efficiency allows for the simulation of a large nonlinear free surface with 250,000 nodes

(512 x 512) without boundary reflection concerns due to a small computational domain. However, the numerical
accuracy of this method must be assessed.

Using the medium mesh from Section 4.2 and a timestep size of At = 0.3 s, three sets of spectral coupling

parameters were tested, as shown in Table 4. Sets I, I, and III progressively increase the coupling domain and transition
zone sizes, resulting in longer times to solve the BEM coefficient matrix. The simulations were run on a PC with an
AMD 3700X CPU and an RTX 2060 GPU, leveraging GPU acceleration technology for equation solving, as detailed
in Shi and Zhu (2023a). The time cost per wave period for different spectral coupling parameters is also listed in Table
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Table 4
Comparison of spectral coupling parameters across three sets.
Set | Set Il Set 1l
Coupling domain length 704 m 960 m 1600 m
Coupling domain width 704 m 960 m 1600 m
Transition region width [, 128 m 192 m 320 m
Transition region width I, 128 m 192 m 320 m
Initial BEM Unknowns 4940 7164 13940
Time cost per wave period 219s 29.1s 55.4 s
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Figure 13: Time history of motions with different spectral coupling parameters.

4, demonstrating the method’s high simulation efficiency, requiring only minutes to simulate motion response data
suitable for Fourier analysis.

Figure 13 presents the motion responses simulated with the three parameter sets. The time histories agree well
with each other, with the results from Sets II and III being almost indistinguishable and Set I's heave motion amplitude
slightly higher. This suggests that the simulation can achieve adequate coupling with the parameters II and III used,
and the size of the BEM computational domain (coupling domain) does not significantly affect the motion time history
in the numerical simulation.

Figure 14 compares wave patterns simulated with different spectral coupling parameters. The wave patterns are
consistent across different parameter sets, confirming that the SCBEM allows for nearly undisturbed wave propagation
within the computational domain. As shown in Fig. 14(a), Set I solves the boundary element equation over an area
of 704 m X 704 m, approximately twice the wavelength of the incident wave. Traditional BEMs would struggle
to accurately simulate such conditions in such a limited domain without the spectral layer’s assistance. Usually,
the boundary’s side wall effects and the requirements for wave generation and absorption would demand a larger
computational domain for numerical simulation. However, SCBEM achieves accurate simulations with minimal error.
This highlights the SCBEM’s benefits: it not only significantly expands the computational domain but also reduces the
computational load of FPNF simulations.

5. Heave and pitch responses in head waves

5.1. Response amplitude operator analysis

The incident wave heights H = 0.4 m and H = 4.8 m were chosen to simulate the motion response of KCS
under regular wave conditions with varying wavelengths. For H = 0.4 m, the ratio H/A < 1/200 for all simulated
wavelengths, so the incident waves can be considered linear. In contrast, for H = 4.8 m, the ship experiences significant
heave and pitch, revealing strong nonlinear effects. Figure 15 illustrates the RAOs obtained using the proposed
nonlinear method, along with experimental and computational fluid dynamics (CFD) results from the literature. The
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Figure 14: Wave patterns simulated with different spectral coupling parameters.
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Figure 15: Response amplitude operators for heave and pitch in head waves.

experimental data (EFD) includes model tests conducted by Simonsen et al. (2013) and Sadat-Hosseini et al. (2015)
in the FORCE Technology towing tank, while the CFD results were obtained by Shivachev et al. (2020) using the
STAR-CCM+ software.

Figure 15 demonstrates that the heave and pitch RAOs predicted by our numerical method agree well with those
reported in the literature. The heave response is normalized by dividing by the incident wave amplitude A, and the pitch
response is normalized by dividing by the product of the incident wave amplitude and the wave number kKA. When
compared to the experimental results by Sadat-Hosseini et al. (2015) and the CFD results, our potential flow approach
tends to predict marginally higher heave and pitch RAOs within the range of 1 < A/L,,, < 2. This discrepancy may
arise from the potential flow simulation’s limitation in capturing viscous effects, such as vortex shedding, which dampen
the motion. The RAO curves predicted by our method distinctly illustrate the nonlinear effects on the motion response
of the KCS. In shorter waves (4/ Ly, < 1), the heave RAOs under large wave height is slightly larger compared to that
under small wave excitation. However, the peak heave RAO at a high wave height of H = 4.8 m is about 5% lower
than at a wave height of H = 0.4 m. As for the pitch RAO, differences between wave heights become apparent only
for /L, > 1.5, where the pitch RAO for steep waves is slightly lower compared to that for smaller amplitude waves.
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5.2. Impact of large incident waves

To investigate the nonlinear effects of incident wave height on the motion response of the KCS, we conducted
numerical simulations under three different wave conditions, with 1/ Lpp ratios of 1.00, 1.25, and 2.00. It should be
noted that our analysis is framed in potential flow theory and focuses on the effects of nonlinear free surface and
significant changes in the wetted hull surface while omitting the influence of viscosity that might otherwise modify
the wake pattern and ship motion.

Figure 16 presents the RAOs calculated by the proposed nonlinear method for various incident wave heights. The
influence of wave height on RAOs does not follow a consistent trend across different wavelengths. Specifically, for the
A/ L, = 1.25 case, the heave RAO slightly decreases as wave height increases, whereas for the other two wavelengths,
it slightly increases with wave height. The impact on pitch mode RAOs is less pronounced compared to that on heave.
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Figure 16: The variation of RAO with wave height for waves of different wavelengths.

(a) t/T,=0.00 (b)t/T,=0.25 (c) t/T,=0.50 (@) H/T,=0.75

Figure 17: The instantaneous wetted surface changes of the bow and stern in the wave. (1/L,, = 1.25, H = 0.4m)

Figures 17-19 present the instantaneous wetted surface meshes at different times after the simulation reached the
steady state, with gray panels representing the submerged areas. The initial point #/T, = 0 corresponds to a pitch angle
of zero. As Fig. 17 shows, for a wave height of H = 0.4 m, the wave’s influence on the shape of the wetted surface
is minor, resulting in a dry stern for the KCS hull, while the bulbous bow stays underwater. In contrast, with a wave
height of H = 4.8 m, as shown in Figs. 18 and 19, there are considerable changes in the wetted surface. The transom
stern does not consistently stay dry in such waves and may sporadically come into contact with water, with the bulbous
bow also at risk of partially surfacing. The observed changes in the wetted surface are more evident for A/L,,, = 1.25
compared to /Ly, = 2.00. This is because a ratio of 4/ L, = 2.00 corresponds to longer waves, which have a gentler
wave slope for the same wave height. Consequently, the ship’s movements are more in sync with these longer waves,
leading to less relative motion between the ship and the water surface. In contrast, the ratio of 4/L,, = 1.25 causes
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Figure 18: The instantaneous wetted surface changes of the bow and stern in the wave. (A/L,, = 1.25, H = 4.8m)

Stern

(d) /T.=0.75

(a) t/T,=0.00 (b) /T,=0.25 (¢) t/T,=0.50

Figure 19: The instantaneous wetted surface changes of the bow and stern in the wave. (A/L,, =2.00, H = 4.8m)

more pronounced changes in the ship’s wetted surface due to their steeper slopes and the ship’s more pronounced
response to these wave patterns. Figure 20 further illustrates this effect, showing that the disturbance flow around the

hull is significantly more intense under the 4/ L, = 1.25 wave condition compared to /L, = 2.00.

(NG OO

(b) 2/L,,=2.00

'Ll'\)ol\)-lk

(a)A/L, =125

Figure 20: Far-field wave patterns under incident waves of different wavelengths (H = 4.8 m).
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Table 5
Setup of KCS parameteric rolling test (in prototype scale).

Case 5 Case 11
Wave length A/L,, 1.00 1.15
Wave steepness H /4 0.02 0.02
Ship speed V 5m/s 6 m/s
Natural roll period T, 19.97 s 19.97 s
Damping coefficient a 0.0336 0.0336
Damping coefficient b 0.0067 0.0067

6. Parametric rolling

6.1. Condition setting

Parametric rolling is a critical failure mode in the second-generation intact stability criteria adopted by the
International Maritime Organization. In head seas, large waves can periodically alter the stiffness of the rolling restoring
force, potentially causing severe parametric resonance in roll motion and even capsizing. This section presents a
numerical simulation of the parametric rolling phenomenon for the KCS to validate the proposed method’s ability
to simulate strong nonlinear phenomena.

The numerical simulation setup in this section is refers to Cases 5 and 11 from setup II in the model test by Yu
et al. (2019), using a ship model without bilge keels. Table 5 lists the specific parameters for the simulation cases.
Since potential flow method do not account for viscous effects, roll damping might be underestimated. Therefore, an
additional roll damping force is included in the motion equation:

da I/

M(§4)=—T_H xx§4—%l;x|g4|§4 (€29

where I is the roll moment of inertia, &, the roll angular velocity, T, the natural roll period, and a, b are the first
and second-order damping coefficients, respectively, as listed in Table 5. The model test employed a self-propelled
ship model, whereas the numerical simulation fixes the ship speed and constrains the yaw DoF to maintain heading,
leaving all other DoFs free. Figure 21 shows the ship’s attitude and wave pattern during simulation. It is evident that
the wetted surface undergoes substantial changes under these conditions, which may result in a pronounced emergence
of the bulbous bow.

p L ”~ ~ rd
-~

(a)1/T,=0.00 (b)¢/T,=025 (c)1/T,=0.50 (d)¢/T,=0.75

N,

(e)t/T.=1.00 ®t/T.=125 (g)t/T.=1.50 (hyt/T.=1.75

Figure 21: Ship attitude and wave pattern in the numerical simulation of parametric roll (Case 11).
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6.2. Motion time history
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Figure 23: Time history of motion response for Case 11.

Figures 22 and 23 compare the motion time history of the numerical simulation with the experimental measure-
ments. A positive pitch indicates bow trim, while a negative one indicates stern trim. For comparison, the time on the x—
axis is nondimensionalized using the encounter wave period 7. Phase differences between simulation and experiment
may occur due to the challenge of maintaining a constant encounter period in the model test. As shown in Figs. 22 and
23, the fully nonlinear method accurately predicted the parametric rolling phenomenon, with the amplitude and phase
of the roll and pitch motions closely matching experimental results. The simulated roll amplitudes for Cases 5 and 11

are 24.0 degrees and 18.7 degrees, respectively.
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Additionally, the heave and pitch DoF exhibit coupling effects with the rolling motion. After the occurrence of
parametric rolling, the ship’s heave equilibrium position shifts slightly upwards, and a slight bow trim is observed
in the pitch equilibrium position, similar phenomena could also be observed in the viscous numerical simulations by
Wang (2020).

6.3. Attitude and restoring force
The periodic and significant changes in the roll restoring coefficient are commonly regarded as a primary cause of
parametric rolling. For small-amplitude motion in mild waves, the roll restoring moment is directly proportional to the
metacentric height GM|, and the roll angle &,:
Mlinear — gAGMO§4 (32)

res

where A is the displacement. However, under large-amplitude waves, the ship’s instantaneous wetted surface can differ
markedly from the calm water condition. The hydrostatic restoring force is defined as the resultant of gravity and
hydrostatic pressure on the instantaneous wetted surface:

Mrr:;nlinear - Mrgorlf;\’lty + p// —gz (nzy — nyz) ds (33)
Sb

A well-known simplified model for parametric rolling uses the Mathieu equation, assuming that the metacentric
height oscillates with the incident wave. The Mathieu model’s restoring moment is given by:

MMathiew — o AGM ()&, = gA (GMy + GM , cos(w,1)) &, (34)

res

And the roll motion equation with linear damping becomes:

d? d
A + Zﬂwel;x%

i +gAGM(H)E, = 0 35)

where p is the dimensionless linear damping coefficient. By defining ¢, = &4 exp (u7), we can rewrite Eq. (35) as the
standard Mathieu equation:

dZd)a =0 36
T + (py+q4c087) P, = (36)

Here, 7 = w,t is the non-dimensional time, p, = AGM,)/ (a)gI )’C ) u? indicates the ratio of roll natural frequency
to encounter frequency, and ¢, = AGM,/ (wg 1 )’C ,) measures the variability of the restoring stiffness with the wave
presence. The stability diagram in Fig. 24 shows an unstable regions around p, = 0.25, where the encounter frequency
is double the natural roll frequency. At these encounter frequencies, increased variation in the roll restoring stiffness

heightens the risk of parametric rolling.

0.25 1 2.25 4
P4

Figure 24: Ince-Strutt diagram. The shaded area indicates the unstable region of the Mathieu equation.
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Figure 25: Comparison of nonlinear restoring force after periodic steady state with linear theory and Mathieu model.

Figure 25 presents the time history of the roll restoring moment calculated by the nonlinear potential flow method
and compares it with linear theory and the Mathieu restoring force model. The G M, in Eq. (34) is obtained by parameter
identification of the nonlinear restoring force. The roll restoring moment exhibits clear nonlinear characteristics,
notably the pronounced higher-order components. As depicted, the peak restoring moment occurs slightly before the
maximum roll amplitude. However, the model in Eq. (34) falls short of fully capturing the nonlinear restoring force.
The nonlinear restoring force tends to exceed calm water metacentric height estimates. This discrepancy is likely due
to the asymmetry of the KCS hull and the interaction with other DoFs.

Restoring moment Restoring moment
15f — == Roll 1 15F — === Roll

t/T.
(a) Case5 (b) Case 11

Figure 26: The phase relationship among roll restoring moment, roll, and pitch.

Figure 26 shows the phase relationship between the roll restoring moment, roll, and pitch. For comparison, all data
are normalized by their first-order Fourier components. For Cases 5 and 11, it is observed that after reaching a periodic
steady state, the KCS roll stabilizes at O degree simultaneously with the pitch approaching approximately 0 degrees.
The roll restoring coefficient is generally higher when the ship trims by the stern than by the bow. Figure 27 explains
this phenomenon by showing the KCS hull’s instantaneous wetted surface at different times for Case 11. The stern of
the KCS hull exhibits a pronounced flare, whereas the bow is more tapered. In a trim by stern condition, the roll motion
induces significant changes in the waterline area at the stern, resulting in a large submerged area, a high moment of
inertia for the waterplane, and consequently, a substantial roll restoring coefficient. Conversely, when the ship is in a
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trim by bow, the stern emerges markedly, reducing the moment of inertia of the waterplane and, therefore, diminishing
the roll restoring force.

(a)¢/T,=0.00 ~ =

(©1/T,=050 == (d1/T,=075 — o e

Figure 27: The instantaneous wet surface of the KCS hull at various times (Case 11).

7. Conclusion

This study presents an efficient FPNF method for seakeeping prediction. It employs the SCBEM for solving the
BVP of nonlinear potential flow effectively. A technique based on acceleration potential is proposed to address the
interdependency between acceleration and fluid forces, thus ensuring stable numerical simulation of the ship’s 6-DoF
motion. To accurately capture the dynamic changes in the flow field boundaries, the study develops an overset mesh
method and an instantaneous wetted surface technique, which relies on node movement and panel cutting.

The validity of this method is confirmed through convergence analysis, examining the impact of varying grid
resolutions, timestep sizes, and spectral coupling parameters. The results demonstrate good consistency across different
settings. Particularly, the analysis focusing on spectral coupling parameters underlines the advantages of SCBEM,
showcasing its capability to conduct nonlinear simulations across extensive computational domains with significantly
lower computational demands compared to conventional approaches. Remarkably, simulating the KCS motion response
takes less than one minute per wave period, highlighting the method’s efficiency.

Further, the study performs nonlinear simulations to evaluate the KCS’s heave and pitch motion responses in
head waves. The RAO curves predicted from our method agree well with those from experimental and other CFD
studies in existing literature. The simulations also illustrate the nonlinear effect of large incident wave heights on
motion responses. Specifically, with larger waves, the heave RAO curve’s peak value diminishes, and the shape of the
instantaneous wetted surface undergoes more noticeable alterations.

Besides, the method precisely simulates the KCS’s parametric roll, aligning the amplitude and phase of each DoF
in the numerical simulations with model tests. The nonlinear simulations demonstrate the coupling effects between
different motion modes; during parametric roll, the ship exhibits slight lifting and bow trimming. An analysis of the
restoring force history and wetted surface attribute these phenomena to the asymmetry between the bow and stern. The
KCS’s flare stern provides a more substantial restoring force under parametric roll conditions, leading to the coupling
effect.

The present method aims to provide an efficient and accurate tool for predicting seakeeping performance. However,
it’s important to note that this method has its limitations. As a potential flow method, it cannot accurately account for
the effects of viscosity and wave breaking, and therefore has inherent limitations in simulating phenomena such as
the wake of high-speed vessels and bow wave breaking. In addition, the method tracks the water surface based on
the Zakharov form of the free surface condition, which doesn’t allow overturning waves to be simulated. This raises
questions about the accuracy of the simulation of slamming and green water. Our future work will include a detailed
assessment of the effectiveness of the method in predicting added resistance, as well as investigating its validity in
calculating slamming and green water loads.
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